Increased volumetric hydrogen uptake of MOF-5 by powder densification

نویسندگان

  • J. J. Purewal
  • D. Liu
  • J. Yang
  • A. Sudik
  • S. Maurer
  • U. Müller
چکیده

The metal-organic framework MOF-5 has attracted significant attention due to its ability to store large quantities of H2 by mass, up to 10 wt.% absolute at 70 bar and 77 K. On the other hand, sinceMOF-5 is typically obtained as a bulk powder, it exhibits a lowvolumetric density andpoor thermal conductivitydboth ofwhichareundesirable characteristics for ahydrogen storage material. Here we explore the extent to which powder densification can overcome these deficiencies, as well as characterize the impact of densification on crystallinity, pore volume, surface area, and crush strength. MOF-5 powder was processed into cylindrical tablets with densities up to 1.6 g/cm by mechanical compaction. We find that optimal hydrogen storage properties are achieved for r w 0.5 g/cm, yielding a 350% increase in volumetric H2 density with only a modest 15% reduction in gravimetric H2 excess in comparison to the powder. Higher densities result in larger reductions in gravimetric excess. Total pore volumeand surface area decrease commensuratelywith the gravimetric capacity, andare linked toan incipientamorphization transformation.Nevertheless, a large fractionof MOF-5 crystallinity remains intact in densities up to 0.75 g/cm, as confirmed from powder XRD. Predictably, the radial crush strength of the pellets is enhanced by densification, increasing by a factor of 4.3 between a density of 0.4 g/cm and 0.6 g/cm. Thermal conductivity increases slightly with tablet density, but remains below the single crystal value. Copyright a 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Stability of MOF-5 in Humid Environments: Impact of Powder Densification, Humidity Level, and Exposure Time.

Metal-organic frameworks (MOFs) are an emerging class of microporous, crystalline materials with potential applications in the capture, storage, and separation of gases. Of the many known MOFs, MOF-5 has attracted considerable attention because of its ability to store gaseous fuels at low pressure with high densities. Nevertheless, MOF-5 and several other MOFs exhibit limited stability upon exp...

متن کامل

Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere

Effective thermal conductivity is an important thermophysical property in the design of metal-organic framework-5 (MOF-5)-based hydrogen storage tanks. A modified thermal conductivity model is built by coupling a theoretical model with the grand canonical Monte Carlo simulation (GCMC) to predict the effect of the H2 adsorption process on the effective thermal conductivity of a MOF-5 powder bed ...

متن کامل

Investigation of hydrogen sulfide adsorption in metallic scaffold MOF-5 nanocomposite based on activated carbon for the use of respiratory mask cartridge

Introduction: Hydrogen sulfide is one of the most important impurities in natural gas. Due to the fact that this gas is hazardous, toxic, corrosive and volatile, therefore, the removal of hydrogen sulfide has been studied using several methods. One of the most known procedures is the adsorption process. In the present study, activated carbon and activated carbon-based composite scaffolds (MOF-5...

متن کامل

Anisotropic thermal transport in MOF-5 composites

Metal-organic frameworks (MOFs) are a new class of porous, crystalline materials with applications in the capture, storage, and separation of gasses. Although much effort has been devoted to understanding the properties of MOFs in powder form, in a realistic system the MOF media will likely be employed as dense compacts, such as pucks or pellets, to maximize volumetric efficiency. In these appl...

متن کامل

A metal-organic framework as a chemical guide to control hydrogen desorption pathways of ammonia borane.

We report that ammonia borane with a high uptake capacity for hydrogen can be encapsulated in a metal-organic framework (MOF) via capillary action, where the MOF functions as a chemical guide to control the hydrogen desorption pathways of ammonia borane by releasing only pure hydrogen, lowering its hydrogen desorption temperature, and suppressing its volumetric expansion during hydrogen desorpt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012